Snap your App!

Ted Gould
ted@canonical.com
@tedjgould

Ubucon

November 19 2015

““ Ubuntu Core provides transactional updates with
rigorous application isolation. This is the smallest, safest
Ubuntu ever, on devices and on the cloud. We're excited
to unleash a new wave of developer innovation with
snappy Ubuntu Core!

Mark Shuttleworth, founder of Ubuntu and Canonical.

Ubuntu

* Debian based (package fFormat and policies)

* Reqgular Releases
« Updated via Apt

®
.
5

B

=

u
T
a
==
-

Ubuntu Phone

* Click Applications
e System Image Updates

Why Click?

Millions

0
Thousan ds @

Leaves are Simpler

Single Dependency

Click Click Click Click
App App App App

Ubuntu Touch

Reviewers Don't Scale
) |

Why Image Based Updates?

* Binary: Works or it doesn't
* Provides opportunity to

rollback AR AR

* Simple testable states

“Let's Take Ubuntu Phone
all the way to 11"

— Us, acting cooler than
we actually are

Snappy Ubuntu Core

* Transactional Updates
* Snap based Apps

* Snap frameworks
« OSsnap

Deb-based) € Snap-based
System - System

Framework

Snappy Ubuntu Core

Hardware Abstraction

App

Gadget

Hardware Abstraction

* Provided by board vendors
* Allows for custom drivers and config

<

ARM

NVIDIA.

“Gadget” Snap

Per-device configuration
Snaps to install
Permissions

Branding

Framework Snaps

* Provide shared services
 Mediate resources
* [PC to Apps

l&#dockar

Mir System
Compositor

&
\ 4

Why snap? (not click)

Click v2.0

Click only For leaf nodes

Support for OS and framework snaps
Lower level components

Cloud

Internet

o Corp
Of Things

I'T

W

Consumer Devices

Trend: Internet of Things

Smaller computers
Internet connectivity
Full OS resources
Must be reliable

Trend: Consumer Devices

 More complex
Interactions

* Bullet-proof
experience

 Complex security
situations

Trend: Corporate/Education IT

* Verifiable Images

* Upgrades don't cause
downtime

* Confined apps and
app permissions

Trend: Cloud and Containers

* Small base OS
* Unit of specialized code
* Tested as a unit

l&#dockw

Snappy Store

Store Story: Erle Robotics

Store Store: Networking

A

Try it today!

amazon
web services"

Microsoft Azure

ANVM

http://ubuntu.com/snappy

What is a snap?

e A self-contained
bundle

* Includes
dependencies

e Works with
frameworks

Snap Directories

Directory Writable? | Description
/apps/<app- No Read-only files, libraries, resource files, and other binary data shipped with the
name>/<version>/ app.

i Writable files, configuration or other data that is not specific to any user. This
fuar;’llbfappsf::appr Yes directory needs to be created by the application right now and will be created
names/<version>/

by the snappy tool soon.
/var/lib/apps/<app- !

e e No Read-only for the apps, backup purpose.
/home/user/apps/<app- Ves Writable, configuration or other data specific to the calling user. The app needs
name>/<version>/ to create them right now. They will be created by the snappy tool soon.
/home/user/apps/<app- No Read-only for the configuration or other specific data for the calling user,
names>/<old-versions>/ backup purpose. This is not created by snappy right now but will be soon.

https://developer.ubuntu.com/en/snappy/guides/filesystem-layout/

Snapcraft
Cloud Parts

S |

Source &'

Common Repositories

Code F
> Snapcra " — < Binaries
snapcraft
yaml ~
package
yaml
D Binaries
package
@ < yaml
digital
Dﬁﬂﬁc signature

Block Incep

snapcraft.yaml

name: photoviewer

version: 0.2

vendor: Ted Gould <ted@canonical.com>
frameworks: [mir]

summary: Photoviewer from Flickr tags

binaries: parts:
photoviewer: agml:
exec: gmlscene main.gml -- plugin: gml
caps: photoviewer:
- mir_client plugin: copy
- network-client files:

main.gml: main.gml
PhotoViewerCore: PhotoViewerCore

snapcraft.yaml

name: photoviewer
version: 0.2
vendor: Ted Gould <ted@canonical.com> -—— PaCkage .
frameworks: [mir] |nf0rmal‘.l0n

summary: Photoviewer from Flickr tags

snapcraft.yaml

System
Integration

binaries:
photoviewer:
exec: gmlscene main.gml --
caps:
- mir_client
- network-client

snapcraft.yaml

Build
Instructions

parts: l

agml:
plugin: gml
photoviewer:
plugin: copy
files:
main.gml: main.gml
PhotoViewerCore: PhotoViewerCore

Snapcraft lifecycle

This lifecycle diagram depicts the whole snapcraft process, that is composed by several
steps with reflection in the snapcraft utility pertinent commands.

O

SNabDDV

@ : » snapcraft --help
usage: Snapcraff [-h] {init,shell, run,pull,build,stage,snap,assemble,all} ...

positional arguments:
{init,shell, run,pull,build,stage,snap,assemble,all}

init start a project
shell enter staging environment
rumn run snap in kvm
pull get sources
build build parts
stage put parts into staging area
snap put parts into snap area
assemble (all) make snap package

() .anlﬂnal arguments:
Snapov -h, ——hﬁlp show this help message and exit

H::I H :i:' I

Snapcraft lifecycle

The pull phase takes care of the downloading / cloning of the remote files needed for
this part.

===0 .

SnabDV
Snapcraft will create a parts/ directory with sub-directories for each part that contains
the downloaded content.
.e:partspart-nam e/src

This step will download content, e.g. checkout a git repository or download a binary
component like the Java SDK.

Snapcraft lifecycle

The build phase builds the parts of the downloaded code.

e build ' @

SNabDV

The next step is that each part is built in its parts/part-name/build directory and installs

itself into parts/part-name/install.

Snapcraft lifecycle

The stage phase copies the installed files into a user-visible stage/folder. All parts share
the same File layout.

Src build stage

SNabDDV

the parts are combined into a single directory tree that is called the "staging area". It can
be found under the ./stage directory.

Snapcraft lifecycle

The strip phase copies the files in stage, minus any filtered/excluded Files into the user-
visible snap/folder. It also creates any additional package metadata.

|] |] |] |] |] |] |] | I@
e, M T— e . S .

Src build stage snap @

SNabDV

The snap step moves the data into a ./snap directory. It contains only the content that
will be put into the final snap package (unlike the staging area which may include some
development files).

This ./snap directory is useful for inspecting what is going into your snap and to make any
final post-processing on snapcraft's output. The metadata info about the project will also
now be placed in ./snap/meta.

Snapcraft lifecycle

The snap phase wraps the needed files into a .snap file with the snap packaging format.

|] |
puts_ B

SNabDV

The final step builds a snap package out of the snap directory.

This .snap File can be uploaded to the Ubuntu store and published directly to snappy
Ubuntu Core users.

Upload to Store

UbU ntUG’ myapps Ubuntu Core Ubuntu Personal Desktop

Your packages

Mew package

Package name Version Progress
snapcraft-daily 2 @ rublished Review Feedback Stats
Get help Participate on AskUbuntu »

A collaboratively-edited question and answer
Publishing an app Get started site For Ubuntu users and developers. 100%
free, no registration required

Packaging click apps Application states
Ask a question now »

Choosing a license Creating a2 good icon

Other forms of submitting apps Security policy for click packages Report a bug on this site

Further Reading

 http://developer.u
things developing
to Snappy config fi

buntu.com — Information on all
or Ubuntu, from phone API docs

e fFormats.

 http://myapps.developer.ubuntu.com — Store to

upload apps to

 http://ubuntu.com/snappy — Information on
Snappy, suitable for non-developers

 http://askubuntu.com/— Stack Exchange to ask
and eventually answer questions about Ubuntu,

including Snappy a

nd Snapcraft

http://developer.ubuntu.com/
http://myapps.developer.ubuntu.com/
http://ubuntu.com/snappy
http://askubuntu.com/

Questions Please

