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Abstract

Simultaneous Multithreading (SMT) is an architecture which allows for
multiple thread contexts to exist simultaneously inside the processor. This thesis
analyzes the relationship between this architecture and the software running directly on
top of it, specifically in scheduling. A model is built to simulate different scheduling
algorithms for use within this relationship. Four algorithms are tested with the model
on data sets created to simulate real world conditions for the processor. Two of the
scheduling algorithms allow for commonly used thread contexts to remain within the
processor at the end of a timeslice. The results show that allowing these thread
contexts to remain in the processor can shorten wait and response times without
sacrificing performance on a variety of workloads.
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Glossary of Terms

Central Processing Unit (CPU) - the part of the computer where the majority of
processing is done. This typically controls all other parts of the computer.

CPU - see Central Processing Unit
ILP - see Instruction Level Parallelism

TA-64 - a 64-bit processor instruction set developed by Intel and Hewlett-Packard
which has explicit ILP.

Instruction Level Parallelism (ILP) - a term to describe how much dependency the
instructions of the program have on each other.

Operating System (OS) - the computer program that controls the basic functions of
the hardware and schedules the processes for the user.

OS - see Operating System
process - a single list of instructions which can be executed. Sometimes this is
thought of as a program, but a single program can contain smaller processes

called threads.

Simultaneous Multi-Threading (SMT) - a process which allows multiple threads to
be executed simultaneously inside a processor.

SMP - see Symmetric Multi-Processing
SMT - see Simultaneous Multi-Threading

Symmetric Multi-Processing (SMP) - describes a computer that has multiple
processors with similar characteristics as to make controlling them easier.

Thread Level Parallelism (TLP) - the term used to describe the parallelism that can
exist between multiple threads in a system.

TLP - see Thread Level Parallelism



Chapter 1: Introduction

In the last twenty-five years, the architecture with which the Central Processing
Unit (CPU) has been designed significantly changed. This change, along with the
advances in chip development, has lead to one of the largest increases of
price/performance of any product. Although the developments in the processes that
produce the chips are remarkable, to cover everything would take much more than one
paper. As each significant change in processor design is developed, all of the
relationships with that processor functions and the system around it have to be
rethought. Although this is not necessary always, it is done to satisfy the insatiable
craving for speed that the human race seems to have. The architecture change to
implement Simultaneous Multi-Threading (SMT) is no different.

SMT moves computer architecture to a new phase in its history, a point where
Thread Level Parallelism (TLP) is exploited. This changes the way one looks at the
processor. No longer is it a slave to the Operating System (OS); rather it is an active
participant in the threading process. Tasks can be executed while the OS is handling
other processes’s system calls. This is not entirely new as supercomputers have been
dealing with many of these issues throughout their history. Never has this been dealt
with on a single processor system. This is why the components of the overall

computer system must be rethought.



Does it make sense for an ethernet card to be able to have its own private
thread in the processor for encryption? Can the hard drive use a thread to defragment
the filesystem in real time? Could threads turn into a resource that every process is
given when it starts up similar to file handles? These tasks, while they seem very
high level for what a processor should be handling, are possibilities that can be
explored in an SMT world. Today, the first step is the most important. The first step
is to get cooperation between the operating system and the SMT architecture. The
next step is for further research (which is discussed in Chapter 5).

The total effect of making the OS more “SMT aware” will be a performance
increase. To make an architecture successful it cannot only implement something that
is successful on the micro level, it must also improve the performance of the overall
system. Most users do not really care about the details in the processor architecture of
the system; they only care about the throughput that their program is able to achieve.
Total system performance is achieved through the integration of the fundamental
architecture of the system and the OS that runs above it. Unlocking the performance
gain achievable through this integration is the key point of this thesis.

This thesis starts by looking at the past. Chapter 2 looks at both the history of
the microprocessor and of SMT. Chapter 3 then starts to talk about the model that
was created for this research, how it works, and what it does and does not do. In
Chapter 4, data is generated and analyzed for all of the data sets. Chapter 5 then
brings everything together into a conclusion. It also discusses how further research
could be carried out on this subject. Finally, the Appendix contains all of the source

code that was used for this research.



Chapter 2: Background

SMT is a new way of looking at technologies that have found themselves in
processors of the past. To truly understand the impact of SMT, one must look at the
technologies that form its foundation. In this chapter, the processor technologies of
pipelining and out of order execution are discussed. Together these make up the
traditional processor used later in the simulation. There is also a short discussion on
why memory delays are still an issue with these two processors, and a small outline of
the memory hierarchy. Next, a large section describes the development of SMT on
top of these technologies. This outlines the previous research on the subject and some
of the results of that research. Lastly in this chapter there is some discussion on the
TA-64 architecture, another modern architecture in development, for comparison

against SMT.

Pipelining Processors

Patterson and Hennessy' equate the pipelining of processors to a automobile

assembly line. They talk about how the instruction goes through different stages of

! Patterson, David A. and John L. Hennessy, Computer Organization and
Design: The Hardware/Software Interface, (San Mateo, Calif.: Morgan Kaufmann
Publishers, 1994), 364



the processor, much like a car getting its bumper installed at one station and its
windshield at the next. This analogy works very well in creating the idea of how the
processor works, but it does not explain all the issues involved in pipelining a
processor.

A processor is divided into several sections including registers, memory access,
and mathematical units. These are not all of the units in a processor, but they will
suffice for this discussion. When the processor is doing a memory access, it is not
simultaneously using the mathematical units. This means that another instruction
could use these units while the first is waiting on the memory access units. By
standardizing the order that instructions can use the differing units in the processor,
each unit can be servicing an instruction simultaneously in the processor. This
institutes better use of hardware already in the processor.

The length of time that each of the individual units takes becomes the limiting
factor on the clock speed of the processor. This increases the overall throughput of

the processor.

Under ideal conditions, the speedup from pipelining equals the number
of pipe stages; a five-stage pipeline is five times faster. Usually,
however, the stages are imperfectly balanced. In addition, pipelining
involves some overhead.?

While the ideal pipeline increase the speed of the processor, hazards are introduced
into the processor.

Several different types of hazards exist including data, control, and branch

2 Ibid., 365.



hazards. Each hazard causes the processor to be unable to use its pipeline most
efficiently. The processor must detect these hazards and apply avoidance techniques
that have been developed to remedy the situation. While overall time is saved, the
processor grows in size with the additional hardware to detect these hazards, and also
slows down slightly from the ideal pipelined processor. Typical overall speedup is

two and a half to three times on four to eight stage pipelines.’

Superscalar and Out-of-Order Execution

Superscalar processors take the ideas of pipelining and literally double them.
Although they are not limited to two, the first superscalar processors had two pipelines
that were identical to each other to execute instructions. This adds problems as
machine code expects to be executed in the order that it was compiled. Sometimes the
execution of a single instruction is blocked by one unit that is slower than other units
in the pipeline. If the next instruction does not need that unit, then it could move on
through the pipeline without waiting for the instruction in front of it. This is what is
called out-of-order execution. Both superscalar and out-of-order execution have issues
dealing with instructions that are dependent on one another.

With some sets of instructions, it is completely impossible to dispatch to a
second pipeline. It is also impossible to speed up execution by moving the
instructions out-of-order. When a set of instructions does not allow for optimization,
the extra hardware is wasted, and the processor is reduced to a simple pipelined

processor.

* Tbid., 437.



Memory Problems

“Because CPU speeds continue to increase faster than either DRAM access
times or disk access times, memory will increasingly be a factor that limits
performance.”™ For this reason, a memory hierarchy is created in modern computers.
This hierarchy consists of a hard drive at the bottom, standard DRAM and cache in
the middle, with register files on the top. This allows the computer to keep the data
which is used the most in the fastest memory, thus hiding the fact that most of the
memory is relatively slow. The memory hierarchy also enables programs to use as
much memory as they would like, especially as hard disk prices continue to drop.

While the memory hierarchy does a good job of hiding the slower memory, it
is not perfect. When the processor is forced to access main memory, or worse, the
disk, it is forced to stall other instructions from entering the processor. Superscalar
and out-of-order systems are able to deal with this to some extent, but for long
requests even they are forced to stall. As cache miss rates approach almost one
percent’, a 500 MHz processor still has over 5 million misses a second. Anything that

a processor can do to help with the memory speed problems can add up very quickly.

Enter SMT

The developments of SMT started in early 1994 as a group of researchers

realized that modern processors were not getting as much performance out of the chips

* Tbid., 519.

S Ibid., 514.



as they could.

We were beginning to see commercial microprocessors that could issue
many instructions per cycle (wide superscalars), but which rarely did so
due to dependencies and long memory latencies. In fact, processor
utilization seemed to be declining as fast as instruction issue width was
increasing.’

They then started to work towards a general solution to allow multiple threads to fill

up the unused cycles in the processor. By using all of the instruction cycles that are

available to the processor, the overall performance of the system is increased.

Filling the Pipelines

Through the hazards and dependencies fpssuesls Full ssue Slot

D Empty Issue Slot

Cycles
that were discussed earlier in this chapter, the

non-SMT, or traditional, processor is unable to

fill all of its pipelines every cycle. In some

Vertical Waste
12 Slots

cases, it can even be as bad as shown in Figure

2.1. This figure also introduces the terms

horizontal and vertical waste. Horizontal waste Figure 2.1 Issue slots for a traditional

) ) processor over several cycles. (Tullsen,
occurs when there are not enough instructions 1998)

that can be executed in parallel to fill all of the pipelines. Vertical waste occurs when

instructions are dependent on a previous instruction, but that instruction is blocked in

% Tullsen, Dean M., Susan J. Eggers and Henry M. Levy, “Retrospective:
Simultaneous Multithreading: Maximizing On-Chip Parallelism,” in 25" Year of the
International Symposia on Computer Architecture, ed. Gurinder Sohi (New York:
ACM Press, 1998), 115.



some way, usually waiting for memory. Both of these are possible issue slots where

an instruction is not started, and thus a waste of the processor.
Issue slots

Full Issue Slot
Cycles 1 wiﬁrifef is thread

Empty Issue Slot

SMT fixes this problem by keeping

|

multiple thread contexts in the processor
simultaneously. This can be seen in Figure 2.2.

In this picture the additional issue slots are filled
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by the other threads that are in the system.
11233

3[3/4]4
v would be filled, realistically there will always be

Figure 2.2 Issue slots of a processor with
SMT. Four threads are executed.

Although it would be ideal that all of the slots

slots that go unused. This is because the
instructions from the different threads will not have dependencies on each other.
Research has shown that with four threads vertical waste is reduced to less than 3% .7
This is an incredible step forward compared to a 8-issue traditional processor where
vertical waste is closer to 50%.* By allowing multiple threads to execute in these
otherwise lost cycles, the overall performance of the processor increases to otherwise

unprecedented levels.

Costs of SMT

Nothing good comes without a cost. Thankfully, the cost to implement SMT

7 Tullsen, Dean M., Susan J. Eggers and Henry M. Levy, “Simultaneous
Multithreading: Maximizing On-Chip Parallelism,” in 25" Year of the International
Symposia on Computer Architecture, ed. Gurinder Sohi (New York: ACM Press,
1998), 538.

¥ Ibid., 537-8.
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in a processor that is already superscalar is minimal. One of the biggest complications
in adding SMT to a processor is the ability to handle the issuing of multiple
instructions per cycle. This is already handled in the superscalar design. The out-of-
order execution units also allow for the multiple threads to be independent of each
other. The TLB and branch prediction can be reused between all of the threads and
still be effective.” This also means that adding SMT to a processor does not have a
large impact on the design of the processor.

One component where SMT has a big impact that is not included in a standard
superscalar processor is in the size of the register file. The SMT register file must be
larger than a traditional processor’s register file. If four threads are executing
simultaneously, then the register file needs to be four times as large. This becomes a
significant limitation as it is difficult to create a register file which can access large
numbers of registers within the shortening cycles at which processors are running.
Here is a place where techniques in register relocation'® could be useful, but are not
currently being used in SMT research today. These techniques could reduce the size
of the register file needed, however it would still need to be larger than a standard

register file, making the implementation difficult.

? Lo, Jack L., et al., “Converting Thread-Level Parallelism to Instruction-Level
Parallelism via Simultaneous Multithreading,”
http://www.digital.com/alphacem/papers/smt-vs.pdf (20 July 1999).

1 Waldspurger, Carl A. and William E. Weihl, “Register Relocation: Flexible
Contexts for Multithreading,” Proceedings of the 20" Annual Symposium on Computer
Architecture, (New York: ACM Press, 1993).
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Competing Architectures

With any problem, different groups of people are going to come up with
different solutions. Two solutions that are competing in the marketplace with SMT
are the TA-64 architecture and Multiprocessors (MP). Each solution tries to use the
additional area that is available to today’s microprocessor to achieve an overall
performance increase for the user.

The TA-64 architecture tries to remove some of the dependencies that the
instructions have on each other in the compiler. The compiler can optimize instruction
ordering and can explicitly set instructions to execute in parallel inside the processor.
The compiler can also decrease memory latencies by executing speculative commands
to pull up data from memory ahead of time. The IA-64 also handles predication,
which allows branches to be handled quickly within the processor. The 1A-64
architecture, to a large extent, increases instruction level parallelism (ILP) for the

' Unfortunately, there are no formal results comparing the two architectures

processor.
yet.

MPs take the space that is normally dedicated to a wide superscalar processor
and fill it with several smaller processors. This also exploits TLP as different threads
are sent to each processor independently of the other processors. This solution also
takes care of many of the synchronization problems that occur with Symmetric

Multiprocessor (SMP) systems. By having the two processors share the same cache

and memory, they do not have to be continually synchronized. Jack Lo, et al., in their

! Intel Corporation, IA-64 Application Developer’s Architecture Guide, Rev.
1.0, (Intel Corporation, 1999), ch. 9.
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paper'? compare several MP designs with SMT architectures. Their conclusion is that
the SMT design is more flexible in handling both ILP and TLP where it is available.

The MP designs were optimized for either ILP or TLP, but not both.

2 Lo, Jack L., et al., “Converting Thread-Level Parallelism to Instruction-Level
Parallelism via Simultaneous Multithreading,”
http://www.digital.com/alphacem/papers/smt-vs.pdf (20 July 1999).
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Chapter 3: Modeling and Data Gathering

To analyze the effectiveness of different scheduling algorithms for SMT, a
model was created. This model needed to simulate real workloads for the different
scheduling algorithms and test their effectiveness on that workload. The first part of
this chapter looks at the implementation details of the model that was created.
Following that, the different scheduling algorithms tested in the experiment are
discussed along with the data sets on which they run. These descriptions outline the
idea and explain how the model was expected to perform in the simulation. Next,
there is some discussion of the different statistics that will be gathered on each of the
runs to allow for a comparison of the results. Lastly, discussion about the assumptions
that are made about the model that has been created for this experiment are presented.
For a detailed look at the implementations used in this experiment please see

Appendix A and B for the source code.

Simulation Methods

To simulate the SMT processor several modules were used to represent the
parts of the processor. Those modules are outlined in this section. All of the modules
were written in Scheme using the petite version of the Chez Scheme 6.0a interpreter.

The data gathering was done in Matlab version 5.3. All of the development was done
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with RedHat Linux 6.0 for the x86 processor. All of the processing was done with

Sun Solaris for the Ultra Sparc.

Process Representation

Each of the different processes are represented by a record in Scheme. The
records themselves contain the following data fields: oscall, oscalllength,
cycles, id, output, engine, memcall, and starttime. The oscall field
gives the percentage of time that the process is making an operating system call. This
is evaluated every time that the process is executed. When the process performs an
OS call, it calls the os-makecall routine and then returns to its current position as
an engine. This makes the process execution engine think that the process is done and
it moves on, thus simulating a block for that process. The oscallength attribute
determines how many cycles long the created OS call is. The cycles attribute

records the number of cycles that it takes for the process to be finished executing.
This number is used in the creation of the engine for the process. Id stores an unique
identifier for each of the processes. This identifier is used by some of the scheduling
algorithms to determine if a context switch has occurred. The output attribute is
only used when the processes have finished executing. When the process is finished,
it returns a list of all the times that it executed, and the number of cycles left to
execute at that time. This data is used later in statistics gathering. The engine field
is a place for the engine that the process uses to execute to be stored. This value is

initially set to null and is populated by the process->engine function when the
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process is moved onto the OS stack. The memcall variable stores a function that
returns a value for how many cycles a process can use out of a given set of cycles.
This emulates how processes spend large amounts of time waiting for data to be
brought out of memory. This number also represents the inherent ILP of the process.
If the memcall attribute is low, the process could either be very serial or memory
dependent; the effect is the same in this model. The process cannot use all of the
pipelines or, in this case, cycles it is given. SMT helps hide this by executing another
process in the remaining cycles. Lastly, the starttime variable stores the time
when the process will be moved into the OS queue to be executed by the processor.
This is the basis of many of the statistics that are gathered about the scheduler’s

performance.

Process Execution Engine

The Process Execution Engine consists of two parts: the process queue and the
engine function. The process queue function takes a list of processes, the amount of
time that they need to execute, and moves through the queue executing the engines of
the processes. In the initial call to this function, the number of cycles is four times
the frame size. This represents a processor that has four pipelines that the processes
can use for execution. It then looks to the first function in the list and gives it as
much CPU cycles as its memcall attribute allows it to have. If the process returns
that it is completely done, it is stored on the expired stack and its output is saved.
Otherwise its new engine is saved and the rest of the cycles are given to another

process in the queue. In the traditional processor case, it just exits. In the SMT
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schedulers the next process is chosen by making a call to the schedule-realtime
function, which is discussed in the scheduler subsection of this section, (The
traditional scheduler also makes a call to schedule-realtime, which just returns
the null list causing the function to quit).

The engine execution function is where the ‘work’ is done for the process.
This is the function on which the engine is set up to work on. This function looks at
the overall global time and decides if it has been sleeping or executing. If it has been
sleeping, it logs its start of execution and calls itself recursively. Before it calls itself,
it checks to see if it needs to make an OS call. If an OS call occurs, it returns the

blocked engine to start execution again when the OS call is resolved.

OS Role

The role of the OS in this model is more than just providing services that the
processes need. The OS calls are also representing large device accesses. For
example, if a process was to access the network card, it would effectively be an OS
call. The OS infrastructure is relatively simple in that all it does is add a process
record to the stack where other OS processes already exist. This stack is in the global
context such that the scheduling algorithms use it themselves to determine how the OS

calls are dealt with by the scheduler.

Scheduler
The scheduler is a simple but key part of the entire model. The scheduler has

two parts: schedule and schedule-realtime. The schedule function takes
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in the list which represents the OS queue and the previously executed processor queue.
This program then takes these two lists and returns them, once again, with the
processes redistributed between them. Most of the scheduling algorithms also look at
the global OS stack to move those processes into the processor. The schedule-

realtime function is called every time a process has finished executing. For most

cases this function just returns the next process on the processor stack, but the
flexibility allows other permutations of scheduling algorithms to exist. This feature is
exercised in the Persistent Data schedulers so that they can immediately handle the OS

calls.

Data Set Generation

Overall, data set generation is a straightforward process. This section outlines
the usage of the make-data-set function and some of its interesting components.
The make-data-set function takes most of the same parameters that exist in the
process records, except that it takes a number of processes, and generates their ids and
start times. The start times are based on a spacing variable that is also passed. The
cycles, oscall, oscalllength, and memcall variables are all plus or minus
ten percent. This range allows each of the processes to be slightly different, much like
a real OS. This still works with the specialized data sets that are discussed later in

this chapter, as it does not significantly change the values that are passed.

Data Gathering and Graphing

To gather the data and display them in an intelligible manner, Matlab was
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used. The getdata .m script runs the actual Scheme code, and move the data
generated by display.ss into Matlab arrays. These arrays of data can be used to
generate graphs of the trends that exist. To do this the makegraph function is used.

This function takes a list of parameters, one of which should contain a list of values.
It detects which of these is a list and varies the data along those values. Every point
on the graph consists of the value generated by the SMT scheduling algorithm divided
by the traditional processor’s value for that configuration. This makes all of the

graphs relative to the traditional processor.

Scheduling Algorithms

There are several scheduling algorithms that have different possibilities for
being used in the SMT architecture. The simulation is designed to have a modular
scheduling algorithm to allow multiple algorithms to be tested. This module can
include anything from the traditional processor to the four different SMT schedulers
that are being compared in this paper. The traditional processor is included to try and
remove any bias of the model and the experimentation. All the final statistics are
measured relative to the values generated by the traditional scheduler.

Research for SMT has dealt with looking inside the processor and compiler
optimization. Previous research on multithreaded architectures has handled scheduling

in more detail and is built on here. Rafael Saavedra-Barrera discusses'> two methods

3 Saavedra-Barrera, Rafael H., “Analysis of Multithreaded Architectures for
Parallel Computing,” 2" Annual ACM Symposium on Parallel Algorithms and
Architectures, (New York: ACM Press, 1990).
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of switching processes, which he calls “switch always”, and “switch on load.”
Derivatives of these are discussed in this chapter as Load Top and Shift In,
respectively. The persistent data algorithms steam from discussion on further research
in Jack Lo’s paper'* under “Implications for Operating Systems Developers.” He
suggests looking at some threads as being more important in scheduling, and in this
case the operating system is being determined an important thread.

There are four SMT based algorithms that are analyzed in this paper. The
Load Top algorithm quickly moves through all of the processes in the OS by taking
four at a time to process. This limits the amount of time each process is given, but
each gets more tries at the processor. The Shift In algorithm takes the process on the
top of the OS process queue and slowly shifts it into the processor. Meanwhile it
shifts out the process which has gotten the most time, back onto the OS process
queue. This moves slower through the queue, but it allows more time for each
process. Finally, each of these algorithms is modified to have a persistent version of
the algorithm. This means that one of the thread contexts is permanently filled with

the OS context. This can allow for fast OS calls, and less context switching.

Traditional Processor
The traditional processor uses this model to create a traditional processing

system. The schedule routine for this algorithm first looks at the OS stack; if there

is something there, it starts to process that. If there is nothing on the OS stack, the

" Lo, Jack L., et al., “Converting Thread-Level Parallelism to Instruction-Level
Parallelism via Simultaneous Multithreading,”
http://www.digital.com/alphacem/papers/smt-vs.pdf (20 July 1999).
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scheduler grabs the next process off of the OS queue. The process that was originally
in the processor is put on the end of the OS queue. This effectively creates a round-
robin type scheduler in the OS. This is one of the reasons that all of the statistics are
being analyzed relative to this algorithm. While it is known that the round-robin
scheduler is not the most used in many real-world systems, this experiment is not
concerned about issues like priority scheduling in the OS. The processes do not even
contain a priority attribute. This experiment is more concerned with the relationship
between the OS and the processor, not about the OS itself. By looking at the

relationships between the different algorithms, this issue is neutralized.

Load Top

The Load Top algorithm looks at the top four processes in the OS queue and
schedules them into the processor at the same time. Every time the scheduler is
called, it has the potential to switch out all of the processes that are in the processor.
This is a method similar to those which are used on SMP systems. The SMP systems
have the advantage that they know all processors in the system are the same, and so
all processes will receive the same amount of attention in a given time slice. That is
not the case with SMT. This algorithm does have potential to perform well in testing,
as it moves processes through the processor very quickly. Small workloads have the
potential to get processed with shorter wait times than with other scheduling
algorithms. However, one significant problem with this algorithm exists, it has the
potential for starvation to occur. This occurs as the potential for a process to not get

any processor time exists, even for extended periods of time. If the right number of
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processes are in the OS queue a process could be assigned with the lowest priority for
the processor consistently (this is easy to see with round-robin but in fact can happen
with any other algorithm too, it is just harder to prove). This last slot may not get any
actual processing time if all of the first three processes are able to use it. Even the
second and third slots have potential for starvation with high values of memcall.
Evidence of this will appear in the final statistics by having the maximum wait time
value being extraordinarily high. This model does not have the potential for complete
starvation as eventually there would only be one process, and the simulation will

continue until they all are completed.

Shift In

With the Shift In algorithm, the process
with the highest priority in the processor is the
only one that is removed after the timing interrupt.
By leaving the other three processes in the

processor, they each have a chance to get the
highest priority. This removes the starvation Figure 3.1 Graph showing the number of

frames for a process given the percent
problem with the Load Top algorithm, With the  CPU usage. The traditional processor is
represented by the straight line. The
curved is the shift in algorithm.

Shift In algorithm, each process gets a larger part
of a CPU frame to use for actual processing, even with its memory latencies and
reduced ILP. The equation to determine the amount of a frame that a given process

receives for its time in the processor can be seen in Equation 3.1 and is plotted in
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Figure 3.1. This figure shows the true benefits of SMT and this algorithm. At 100%

Y x(1-! 3.0

CPU utilization, there is no difference between the line generated by the uniprocessor
system. This is an ideal situation that will never happen. In the more practical 60%
to 90% range, significant benefits can be seen. Even though at any one time the
process is unable to use the whole processor, its total trip through the processor
amounts closer to a complete frame of true processing time. At 80% CPU usage, the

difference is almost indistinguishable.

Persistent Data

The Persistent Data method is applied to
both the Load Top algorithm and the Shift In
algorithm to create two new algorithms. The

Persistent Data method allows some of the data to .l

stay in the processor, in this case the operating Figure 3.2 Graph showing the number of

frames that a process gets using the Shift
system. By leaving this process continually in the In algorithm. Lines represent the number
of thread contexts in the processor, with

processor no context switch is needed to move jt  the linear relationship being for one.

into the processor. With the amount of OS calls that are made by the programs, the
context switch time can be large. Unfortunately, this reduces the number of processes
that can be in the SMT processor at one time. Some of the performance gained from

simultaneous execution is lost. This loss for the Shift In algorithm can be seen in
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Figure 3.2. As the number of simultaneous processes drops, the curve gets much
closer to the linear representation of the traditional processor. The gain is still
significant though. Previous research' has shown that three thread contexts is the
most economical gain, about 50% . Promising results for the persistent algorithms.
These methods have the potential to decrease the overall execution and increase the

overall throughput of the entire processor.

15 Saavedra-Barrera, Rafael H., “Analysis of Multithreaded Architectures for
Parallel Computing,” 2" Annual ACM Symposium on Parallel Algorithims and
Architectures, (New York: ACM Press, 1990), 176.
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Table 3.1 contains a list of all of the scheduling algorithms contained above. It

contains a direct comparison of the algorithms that are in this study.

Table 3.1 Comparison of scheduling algorithms used in model.

Traditional Load Top Shift In Persistent
Processor
Description Standard Loads the top  Shifts the first Allows some
processor used four processes  processes on data to remain
tfor comparison in the OS the OS queue  in the
of the other queue into the into the processor
algorithms processor processor consistently
discussed
Advantages - Simple - Quickly - Fair to all - Lowers the
- No new moves through processes number of
hardware all processes - Can context calls
required in OS queue effectively for the
- Small work  increase the persistent
loads will amount of thread
have small CPU time give
wait times to a processes
in a time slice
Disadvantages | - No TLP - Potential for - Moves - Effectively
- Unable to starvation slowly through lowers the
hide large - Long the OS queue, number of
memory processes thus longer threads that
latencies with  could have wait times can be run in

other
processes.

very long wait
times

- Lots of
context
switching

the processor
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Data Sets

To test the various scheduling algorithms, different data sets were developed to
simulate real-world conditions in which the processor could be put. Each of the data
sets has approximately ten million total cycles between all of the processes in the data
sets. Each of the data sets vary in how these cycles are laid out in time. The data
sets are designed to create a set of extremes to push the scheduling algorithms to their
limits.

The four data sets that are discussed each use their cycles in different ways.
The Solid data set evens out the load over time. This allows the processor to have
fewer processes, but new processes are constantly entering the system. The
Simultaneous data set puts all of the processes up front. This puts a large number of
processes in the queue for the algorithm to deal with right away. In the Spiked data
set the processes are spread out evenly, with the exception of several large spikes of
processes. This creates an instantaneous load on the algorithm that must be dealt with.
Finally, the Long data set has very few processes, but each has a very long execution

times. This tests an algorithm’s ability to work with smaller numbers of processes.

Solid

The processes in this data set try to create a solid load over the processor at all
times. The processes are spaced out in a manner to try and move another one into a
processing position when the first one leaves. With this set it can be seen how the
algorithm performs under heavy operation in an environment where large amounts of

processing is done, and how well the jobs are managed. This data set does not take
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into account how many OS calls are made or how many of the cycles the processes
can actually use. This creates a situation where the processor has the potential to get

backed up, and that is where the SMT will be useful.

Simultaneous

This data set puts all of the processes in the very beginning of time scale, and
then lets the processor work on them and try to disperse them as quickly as possible.
This will test the ability of the processor to handle large numbers of processes and see
how well it can deal with such a task. This creates an opportunity for starvation in the
Load Top scheduling algorithm, when the number of processes is a multiple of the

number of processes loaded into the processor.

Spiked

In this data set there are four spikes followed by a short down time, where
there are a few smaller processes. This is a realistic environment for a personal
computer user. In a personal computer the user typically uses large amounts of
processing time (e.g. downloading and displaying a webpage) and then has large
amounts of downtime (e.g. reading the webpage). In this downtime for the user the
OS user space processes will typically do various smaller maintenance tasks for the
system. This data set looks closely at the ability of the scheduling algorithm to handle
several large tasks with smaller tasks entering into the system. This is a situation
where the Load Top algorithm might succeed as it can move through the list of
processes quickly. Other algorithms might have longer wait times as these processes

cannot be serviced as quickly.
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Long

There are very few processes in this data set. The time is divided up among a
very few processes that all start at the same time. The number of processes that will
be tested are 1, 2, 4, 8, and 16. This data set is one that is more likely to be found in
a research computing environment, where a small set of users issue tasks that can have
very long execution times. This data set will have interesting effects on the
algorithms who have had the Persistent Data method applied to them. When
scheduling exactly the number of processes for which the original algorithm had slots
(4), how will the persistent algorithm compare? Even with more processes to continue
to create OS calls, the service speed and context switching could become and issue in

the overall performance of the system.

All Data Sets

For all of the data sets the percentage of memory calls, percentage of OS calls,
frame size, and context-switch time will be varied. The memory call percentage will
be varied from 40% to 100% in steps of 10% . This value also includes the amount of
ILP in the process, which can be very low in processes that execute serially. This can
also be very good, especially with the new breed of compilers being developed for the
IA-64 architecture. The OS call percentage will be varied from 0% to 0.05% in steps
of 0.01% . Although this percentage may seem unusually low, it is important to
remember that this is evaluated at every cycle that the process executes. Five
hundredths of a percent and a 200 instruction OS call would mean that ten percent of
the instructions would be OS calls. The context switch time is going to be varied

from zero cycles to fifteen cycles in steps of five cycles. And the frame size will
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have the values of 100, 200, 500, 1000, and 5000 cycles. The smaller frame sizes

should decrease the wait time, but will increase the effect of the context switching.

This variable will have to be watched closely because it has potential to effect the

benefits and downfalls of all the scheduling algorithms that are being modeled.

Short Form

Table 3.2 includes a short description of each of the data sets and quickly looks

at the importance of each.

Table 3.2 Comparison of the Data sets.

Solid

Simultaneous

Spiked

Long

Description

Shows

Algorithms
Tested

Primary
Values
Watched

Solid load of
processes, one
starts as
another ends

Ability of the
algorithm to
manage
processes
continuously

Provides a
comparison of
Shift In vs.
Load Top in
handling large
numbers of
similarly sized
processes

Wait Time,
Response
Time,
Throughput

Large number
of processes,
all started at
the same time

How large
numbers of
processes can
increase wait
time

Persistent has
the possibility
of doing well
with the large
number of OS
calls that will
be generated

Wait Time,
Total Time,

Short bursts of
large
processes with
smaller
processes in
between

Real time
environment
testing for
algorithms

All the
algorithms
will be equally
tested on this
dataset

Throughput,
Response
Time, CPU
Utilization

Small numbers
of large
processes

How the
processor will
handle small
number of
treads

Traditional
processor may
win, especially
on the lower
number of
processes

CPU
Utilization,
Total Time
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Statistics Gathering

After each simulation is run, data needs to be gathered to evaluate the
effectiveness of the scheduling algorithm on that data set. These values are the
numbers that will be gathered from each of the combinations. This data is gathered by
Matlab to be viewed as a graph. These values are taken from Chapter 5 of

Silberschatz’s book'® on operating systems,

CPU Utilization

CPU Utilization is a measurement of how much of the overall time the CPU
actually spent processing data. That time does not include context-switching or time
that is wasted by the processes doing I/O. This is expressed as a percentage of the
total time used by the simulation. The design goals of SMT are to increase this
utilization so any scheduling algorithm should be consistent with that goal. If the
CPU utilization is less than that of the traditional processor, the algorithm is
destructive to the SMT. Previous research has shown the effect of adding SMT can be

an increase in processor utilization by 52% '” over single chip multiprocessor systems.

Response Time

The time that the process is put into the OS or ready queue is not the time that

16 Silberschatz, Abraham and Peter Baer Galvin, Operating System Concepts,
(Reading, Mass.: Addison Wesly Longman, Inc., 1998).

7 Lo, Jack L., et al., “Converting Thread_Level Parallelism to Instruction-Level
Parallelism via Simultaneous Multithreading,”
http://www.digital.com/alphacem/papers/smt-vs.pdf (20 July 1999).
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the CPU starts to work on the process. This difference is the response time. The
response time would ideally be below one frame size, but practically it will be much
higher than that. One would want the response time to be as small as possible,
especially for user interactive programs. The data sets, which start significant numbers
of processes at the same time will see an increase in response time (not to mention
wait time). Response time will decrease in scheduling algorithms that can quickly get

to processes when they are added to the queue.

Wait Time

Wait time represents the total amount of time that the process spent waiting in
queues. This includes both the OS and the internal processor queues when more than
one process is in the processor. The minimum, maximum, and averages are also taken
on this value. Because this is the total wait time, even things outside of the control of
the algorithm (context switching) are included. The wait time should be related to the
context switch time by the number of times the processes gets an opportunity in the
processor. The maximum wait time can also increase if some processes are being

starved in the processor.

Throughput

Throughput is a measurement of the overall scheduler performance. The
throughput measures the number of processes that are sent through the processor per
cycle. It is more of a compound statistic in that algorithms that reduce wait time,
response time, and turn around time will in turn have a greater throughput.

Throughput is more useful as an overall statistic. Typically a significant increase in
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the throughput is at the cost of increasing the wait time.

Assumptions

In order to make the model less complex, several assumptions have to be
made. Those assumptions are listed here along with an explanation on why it was felt
that they were not crucial to the experiment at hand. The assumptions in this research
included: a limited process blocking mechanism will not effect results; OS calls can be
limited in complexity; and that the round robin scheduling algorithm will be removed

by looking at relative data.

Process Blocking

Part of any threaded application is synchronization issues on commonly used
data items. Many of the threads themselves end up in a blocked state, waiting for
another thread to finish its processing. This synchronization is not handled in this
model of the processor. The only processes blocking that is modeled is blocking using
the OS call. Although waiting for another process is very different than an OS call in
a real system, for this model it is not much different. The OS call blocks the
processes, but if it is the only processes in the system they can be scheduled
concurrently. For the data sets that are being discussed this situation would be rare
(except with the one processes long data set where there is no other processes to be

blocked by anyway).
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Simplicity of OS call

Real systems have several kinds of calls that can be made to the operating
system. While they all vary in length, they all also block the process that they are
called by. The OS calls in the model do not represent either of these functions. The
OS calls do get put on the top of the OS stack after each time slice that the processor
goes through. This in effect makes them finish before any of the other processes in
the system get a chance to executed. This gets further augmented by the fact that OS
calls cannot make other OS calls, and they always have a 100% memory usage.
While this does block the process in the traditional sense, the OS call will probably

get processed before the process gets any more time.

Round Robin “divides out”

In the discussion about the traditional process scheduler, it is noted that the OS
segment of the model is using a round robin scheduler. This scheduler is not one that
is typically used in real systems. To remove this bias from the results, all of them are
being analyzed relative to the traditional processor results. This assumption allows the

results to be examined without looking at the scheduler in the operating system itself.

Overview

The model created for this research provides a flexible environment for testing
the scheduling algorithms discussed previously in this chapter. The four SMT based
scheduling algorithms all have different strengths and weaknesses which will allow

them to perform well on different data sets. The data sets that have been chosen to
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push the algorithms, to find weaknesses, and to represent some real world computing
environments. As the statistics are gathered from the model, the data shall show

where each algorithm’s abilities are limited.
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Chapter 4: Data Analysis

After creating the model, the data was generated. This chapter contains
analysis of the data that is generated by the model for the various data sets. All of the
graphs are scaled relative to the data generated by the traditional processor. This
creates odd looking graphs, but removes the bias discussed in Chapter 3. Analysis is

done by data set, looking at each of the scheduling algorithms on that data set.

Long

One of the first things that is visible from all of the graphs in the long data set
is that all of the SMT scheduling algorithms are better than the traditional processor.
This is unusual as it was expected that the traditional processor had potential to do
much better than the SMT algorithms on the long data set. It was hypothesized that
the traditional processor would do better with the smaller number of processes. What
tended to happen is that the OS calls played a greater role on the overall ability of the

processor than was originally theorized.



One of the places where the large
numbers of OS calls made an impact is
shown in Figure 4.1. This graph shows
the relative throughput of the four SMT
algorithms versus the traditional
processor. With some of the algorithms,

this can be as high as two times the
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Figure 4.1 Graph showing throughput while
varying the number of processes in the data set on

the long data set.

amount of throughput. But with throughput calculated as the number of processes

over time, the number of OS processes becomes a significant factor. The significance
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Figure 4.2 Graph showing throughput while
varying the chance of an OS call on the long data
set with 8 processes.

of the OS call can be seen in Figure 4.2,
where the OS call variable is the one that
is varied. This graph shows the
significance of the OS calls as they are
cut out. The throughput of the different
SMT scheduling algorithms is very close
to that of the traditional processor, even
with only eight processes in the system.

These graphs show the large impact that

the amount of OS calls have on the processor.

Another interesting result on these two graphs is the poor performance of the

Shift In algorithm. The Shift In algorithm is consistently 30% slower when there are

OS calls and more than two processes in the system. This happens at the same time

as the Shift In Persistent algorithm dominates throughout the throughput graphs. This
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shows that the Shift In algorithm cannot maintain a high throughput with large

numbers of processes. Since the majority of the processes are OS calls, the persistent

part of the algorithm handles this deficiency with the Shift In algorithm.

The wait times are less affected by
the number of OS calls in the system.
Both of the Load Top algorithms perform
better than the Shift In schedulers. This
occurs as the wait times for the OS calls
are also calculated. The most interesting
part of Figures 4.3 and 4.4 is that the

Load Top algorithm had shorter wait
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Figure 4.3 Graph showing average wait time while
varying the number of processes in the data set on
the long data set.

times than the Shift In algorithm. The Top algorithm was expected to perform better

in this regard and does so through out all of the Long data set. The Shift In persistent
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Figure 4.4 Graph showing the maximum wait time
varying the number of processes in the data set on
the long data set.

algorithm gets closer to the values
generated by the Load Top algorithms,
especially in Figure 4.4, By allowing the
Shift In Persistent algorithm to handle the
OS calls quickly the wait time is reduced.
This is also show by the Load Top
Persistent algorithm outperforming the

standard Load Top.
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Simultaneous

As was hypothesized in Chapter 3, the persistent algorithms did very well on
the simultaneous data set. With all of the processes being issued at the same time, the
original OS queue is rather large. The problem is that it only continues to grow as
further OS calls are made. This is where the persistent algorithms can, and do, shine.

One of the most evident places

Simultaneous
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— shiftin

P
— - Shift In Persistant
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that this occurs is in the average and
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maximum wait times. In Figures 4.5 and
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Shift In Persistent algorithm operates at  Figure 4.5 Graph showing average wait time while
varying the memcall attribute in the simultaneous

only one half of the maximum for the data set.

traditional processor, and the Load Top closer to 45%. How does this happen on the

simultaneous data set? This is generated by the Persistent’s ability to handle the OS

calls quickly. Interestingly, the Load Top
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Figure 4.6 Graph showing maximum wait times
while varying the memcall attribute on the
simultaneous data set.

time,
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The throughput for the s

Simultaneous data set also has interesting e

results in relation to the memory call

— ShiftIn
percentage. Overall the memory A
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percentage did not affect the relative

throughput of the algorithms at lower o
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values of the memory call parameter. Figure 4.7 Graph showing throughput while
varying the percentage of memory calls on the
When the value gets above 70% , things  simultaneous data set.
change. As the parallelism in the processes increases the SMT architecture becomes
less useful, so the throughput starts to dive down to the level of the traditional
processor. At 100% the nonpersistent SMT algorithms slightly out perform the
traditional processor by keeping the extra contexts. As the processes are being sent
through the processor fewer context switches are required as several processes contexts
are already loaded. Even at the higher levels of the memory call attribute the
persistent algorithms are still able to maintain a high throughput. Being able to handle

the OS calls quickly and without a context switch helps even in a largely parallel

environment,

Solid

The solid data set was created to show a constant load on the processor for an
extended amount of time. Looking at this data set shows a separation between the
Shift In and Top scheduling algorithms emerged, but not always in the most expected

ways. For the most part the persistent algorithms performed the best, as the OS calls
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play a significant part of any real world situation and this simulation.

One of the more interesting graphs
is shown in Figure 4.8. Here the wait
time appears to remain constant as the
context switch time increases. That is not
entirely true. Since all the graphs are
relative to the traditional processor case,

this graph shows that context switch time

affects the average wait time of all of the
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Figure 4.8 Graph showing average wait time while
varying context switch time on the solid data set.

algorithms the same. The persistent algorithms consistently have lower wait times

than the standard scheduling algorithms. This is important with this data set as the

processes are coming continuously, and how much time each of them waits can be a

significant problem. The persistent algorithms handle the small processes well,

without making them consistently wait around in queues. This keeps the average wait

time down. Another interesting component of this graph is how close the two

persistent algorithms are. When looking
at wait time on this data set it does not
matter which scheduling algorithm is

being used.
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Figure 4.9 Graph showing the average response
time while varying context switch time on the solid
data set.
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The ordering is similar in the next graph, Figure 4.9. This graph shows the
response time for the differing processes, and the Top algorithm does not do what was
expected, it increases the response time. The reason that the Top algorithm did not do
significantly better than the traditional processor on this data set is that there are not
many simultaneous processes. This minimizes the benefits that the algorithm brings.
An interesting result on these graphs, is how slow to respond the standard algorithms
are. It is apparent that the OS calls again are playing a large role in the data. With
the smaller numbers of simultaneous processes being able to get to these quickly sets
the average response time. Figure 4.10 examines the response time from the
perspective of the frame size. This shows the difference between the persistent and

standard algorithms start to shrink. The
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Figure 4.10 Graph showing average wait time
while varying the frame size on the solid data set.

The spiked data set was created to
be the most realistic data set in the series.
It was unknown exactly how this data set would work with the relevant scheduling
algorithms, and how they would respond to it. All of the scheduling algorithms

performed well, the persistent algorithms out performing the “traditional” ones.



Figure 4.11 is the graph of the
CPU usage versus the context switch time.
This graph shows exactly what was
hypothesized. As the context time
increases, the Top Select algorithms start
to use less and less of the CPU time.
This comes from the large number of

context switches that both of these
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varying context switch time on the spiked data set.

algorithms have. As the length of the context switch increases, the amount of

productive CPU usage decreases. The two Shift in algorithms are also very close,

with the standard Shift In algorithm slightly edging out the persistent one. As the

persistent algorithm only has three spots in which processes can be executed, when

there are not enough OS calls to fill the last slot some CPU time gets wasted. Most

of the time the fourth slot is filled with an OS call, and that is why the two are so

close.

The throughput curves tell a
different story than the CPU utilization.
In Figure 4.12 it can be seen that the
persistent algorithms maintain a much
higher throughput even with increasing
context switch time. The Load Top
algorithms both have a greater slope than

the Shift In algorithms. As the context
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Figure 4.12 Graph showing throughput while
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varying context switch time on the spiked data set.

switch time is increasing the throughput is decreasing for both quickly. This branches
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from the large number of context switches that these algorithms perform.

et Real differences between the
7 - standard algorithms and the persistent
ones on the graph of response time in
= Bpre | Figure 4.13. On this graph the standard
Shift In and Load Top algorithms look
| like they are performing very poorly. The

0 5 10 15
Context Switch Time

Figure 4.13 Graph showing the average response ~ problems are created through the OS calls
time while varying the context switch time on the

spiked data set. once again. With the amount of OS calls
that occur in a given run, they need to be handled in an efficient manner. Persistent

algorithms do this. When the OS calls add up, like in the spiked data set, the results

can be unbecoming.
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Overall the scheduling algorithms performed consistently across the different

data sets. Their performances can be seen in Table 4.1.

Table 4.1 Table of results comparing scheduling algorithms to data sets.

Long Solid Simultaneous Spiked
Shift In Performed worst Wait time is Good Achieved the
in every good, but performance highest CPU
category except response time is relative to the usage but fell
CPU Usage. abysmal. traditional down on the
Good if you Throughput is processor, but throughput
need a heater also low the worst SMT
algorithm
Load Top Did mediocre Wait times were Throughput was CPU usage
overall, wait bad and high and wait decreased
times better than response times  time low, it sharply with
either Shift In were worse started to context switch
algorithm increase wait time
time early in
memory call
percentages
Shift Persistent | Performed very  Solid Wait times were Performed with
well in all performance, okay, throughput the highest

Top Persistent

categories, best
in throughput
regardless the
number of
processes

Average
performance
only wait times
were very good,
especially
relative to the
traditional
processor

comparable with
Top Persistent,
slightly edged
out in
throughput

Solid
performance, got
slightly edged
out in
throughput

was the highest
of all algorithms

Wait times were
excellent but
throughput was
slightly
outperformed by
Shift Persistent

throughput and
close to highest
CPU usage

Did much better
in throughput
than CPU usage,
but was
mediocre overall
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Chapter 5: Conclusion

Unfortunately by the nature of scheduling algorithms there is rarely an obvious
answer of which algorithm is the best. Typically one algorithm will be better under a
certain set of conditions than another. This thesis is not an exception to that pattern.
Table 4.1 is an excellent example of how the differing algorithms perform very
differently given the type of data set, and even the parameter that is being examined.
One algorithm does not dominate response time, nor does one algorithm dominate a
particular data set. That does not mean that conclusions are inconceivable.

Jack Lo stated that in the operating system “there may be some threads that are
more important than others.”'® In fact he was right, but the important thread is the OS
itself. On all of the data sets the persistent algorithms performed very well, most of
the time the best. This shows that although a potential thread context is lost, the
ability to handle OS calls quickly is of greater benefit. This is best shown in the
decreased wait and response times that the persistent algorithms are able to maintain.

Comparing the Load Top and Shift In algorithms is less straight forward.
Seeing as the persistent algorithms were shown to be more effective, those two

derivatives of Load Top and Shift In should be discussed here. The Shift In algorithm

¥ Lo, Jack L., et al., “Converting Thread-Level Parallelism to Instruction-Level
Parallelism via Simultaneous Multithreading,”
http://www.digital.com/alphacem/papers/smt-vs.pdf (20 July 1999).
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consistently achieved a higher throughput, while the Load Top algorithm has shorter
wait and response times. The throughput is a better measure of overall system
performance, which would lead to weighing it more heavily in discussion of the
algorithms. The Load Top algorithm also has the potential (although remote) for
starvation (Load Top, p. 19), which is a concern of implementing any algorithm is a
real system. These factors indicate that the Shift In algorithm is a better overall

choice for a system with an SMT processor at its core.

Further Research

After showing that one persistent thread is beneficial to the overall system, the
next question becomes how about more? If some processes were determined to have
high priority in the OS, should those also gain “persistent status.” What conditions
promote or demote them from this status? With many researchers discussing SMT
systems with eight thread contexts this becomes even more of a reality. Another
question raised from this research moves into OS design. Currently most OS have a
monolithic kernel which handles all of the systems itself; could this be threaded to
increase performance? Is there a possibility of a driver having its own thread in the
operating system? Does that destroy the effectiveness that the persistent algorithms
present in this thesis? The more questions that get answered the more questions that
there will always be. While many of these issues have been discussed in research for
supercomputers, they still need to be applied to SMT, and different computing

environments.
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Appendix A: Scheme Source Code

Description of Code
When executing the Scheme code all that is required to execute is run. ss.

This file loads the variables, and all of the other source code into Chez Scheme to be

executed. The variables. gs file is automatically generated, but it contains the

data set parameters, and which data set and scheduler to use. The files that start with

dataset_ are all scheme source code that defines a variable called dataset using
the data set variables. All of the files that start with schedule_ are the different
schedulers. Each defines two functions: schedule and schedule-realtime.
These two functions are called by the code in core.ss. core.sg contains the

basis of all of the simulation loops and the functions that actually execute the

simulation. When the simulation completes display . ss is executed to calculate

and display all of the statistics on the run of the model.

core.ss

(define expire-list ' ()) ; where all of the processes go when they are
done.

(define used-time 0) ; the ammount of time that is used in actual

processing by the processesor

(define run-block
; This function takes a set of processes and runs through them giving
; them as much time as they will take.
; 1f they expire they will be put in the expire-list
(lambda (numcycle proclst)

(if (or (<= numcycle 0) (null? proclst))
numcycle
(let™
( (executecyc
(let
((numcyc (floor (* (/ ((process-memcall (car
proclst))) 100) numcycle))))

(if (> numcyc numcycle) numcycle numcyc)

))

(runengret ((process-engine (car proclst))
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(cycles->enginetime executecyc)
(lambda (ticks value) wvalue)
(lambda (x) x)

)

)

(if (list? runengret)

(begin
(set-process-output! (car proclst) runengret)
(set-process-engine! (car proclst) ’elvisrocks)

(set! expire-list (cons (car proclst) expire-list))
)
(set-process-engine! (car proclst) runengret)
)
(run-block (- numcycle executecyc) (schedule-realtime

proclst))
)

)
; (define processes_running ’ ())

(define simulate
; This is the main function for the whole program, it simulates the
core of the processes, in it’s first run (ie, actual users interface)
it should probably be run with the second and third arguements as
; null lists. When it completes it will return the symbol ’'done’ and
have all of the processes originally passed in in the expire-list
(lambda (unrun-in-proc running-proc cpu-in-proc)
(if (and (null? unrun-in-proc) (null? running-proc) (null?
cpu-in-proc)) ’'done
(let*
((tempvar (start-proc global-time unrun-in-proc))
(run-t-proc (append running-proc (cadr tempvar)))
(urun-proc (car tempvar))
(tempvartoo (schedule run-t-proc cpu-in-proc))
(run-proc (car tempvartoo))
(cpu-proc (cadr tempvartoo))
(execution-time (- frame-size (/ (run-block (* frame-size
4) cpu-proc) 4.0)))
)

; (set! processes _running (cons (+ (length run-proc) (length
cpu-proc)) processes_running))

(set! global-time (+ global-time frame-size))

(set! used-time (+ used-time execution-time))

(set! os-stack (prune-expired os-stack))

(simulate urun-proc (prune-expired run-proc) (prune-expired
cpu-proc))

)

)

)

(define prune-expired
(lambda (proclst)
(letrec
((helper
(lambda (proclst retlst)

(if (null? proclst) (reverse retlst)
(if (eq? (process-engine (car proclst)) ’‘elvisrocks)

(helper (cdr proclst) retlst)
(helper (cdr proclst) (cons (car proclst) retlst))
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)
))
(helper proclst ’ ())

)
)
; (define process_launch ' ())
(define start-proc
; This function figures out what processes should be started and returns

; them, along with the new list of unstarted processes.
(lambda (in-time proclst)

(letrec
((helper
(lambda (proclst retlst)
(if (null? proclst) (list " () retlst)
(if (< (process-starttime (car proclst)) in-time)
(begin
(set-process-engine! (car proclst)
(process->engine (car proclst)))
(helper (cdr proclst) (cons (car proclst)
retlst))
)
(list proclst retlst)
)
)
)
))
(let

((retlst (helper proclst ' ())))
; (set! process_launch (cons (length (cadr retlst))
process_launch))

retlst

)

dataset_longl.ss
(define dataset
(make-data-set 0 0 1 0 10000000 memory-calls os-calls os-length))

dataset long2.ss
(define dataset
(make-data-set 0 0 2 0 5000000 memory-calls os-calls os-length))

dataset_long4.ss
(define dataset
(make-data-set 0 0 4 0 2500000 memory-calls os-calls os-length))

dataset_long8.ss
(define dataset
(make-data-set 0 0 8 0 1250000 memory-calls os-calls os-length))



dataset_longl6.ss
(define dataset
(make-data-set 0 0 16 0 625000 memory-calls os-calls os-length))

dataset_simultaneous.ss
(define dataset
(make-data-set 0 0 1000 0 10000 memory-calls os-calls os-length))

dataset_solid.ss
(define dataset

(make-data-set 0 0 1000 10000 10000 memory-calls os-calls
os-length))

dataset_spiked.ss
(define make-spike
(lambda (start startid size)
(append
(make-data-set start startid 100 10 18000 memory-calls
os-calls os-length)
(make-data-set (+ 18000 start) (+ startid 100) 100 17000 2000
memory-calls os-calls os-length)
)
)
)

(define dataset
(append

(make-spike 0 0 2000000)
(make-spike 2000000 201 2000000)
(make-spike 4000000 402 2000000)
(make-spike 6000000 603 2000000)
(make-spike 8000000 804 2000000)

)

display.ss
(define average
(lambda (1lst)
(/ (apply + 1lst) (length 1lst))
)
)

(define process-turnarround
(lambda (proc)
(- (process-finishtime proc) (process-starttime proc))
)
)

(define process-finishtime
(lambda (proc)
(+ (caar (process-output proc)) (cadar (process-output proc)
)
)

(define process-realstarttime
(lambda (proc)
(caar (reverse (process-output proc)))

)

52

))
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)

(define process-responcetime
(lambda (proc)
(- (process-realstarttime proc) (process-starttime proc))
)
)

(define process-waittime
(lambda (proc)
(letrec
((helperx
(lambda (last next accum)
(if (null? next) accum
(helper (car next) (cdr next)
(+ accum (- (caar next) (+ (- (cadr
last) (cadar next)) (car last))))
)
)

)
)
(helper (car (reverse (process-output proc))) (cdr
(reverse (process-output proc))) ’0)
)
)
)

(printf "[")
(printf "~a, " (exact->inexact (* (/ used-time global-time) 100)))
(printf "~a, ~a, ~a, " (apply min (map process-turnarround expire-list))

(average (map process-turnarround expire-list)) (apply max (map
process-turnarround expire-list)))

(printf "~a, ~a, ~a, " (apply min (map process-responcetime
expire-list)) (average (map process-responcetime expire-list)) (apply
max (map process-responcetime expire-list)))

(printf "~a, ~a, ~a, " (apply min (map process-waittime expire-1list))
(average (map process-waittime expire-list)) (apply max (map
process-waittime expire-list)))

(printf "~a, " (exact->inexact (/ (length expire-list) global-time)))
(printf "~a" (- (length expire-list) (length dataset)))

(define print-sequencial
(lambda (1lst)
(if (null? 1st) ()
(begin
(printt a, " (car 1lst))
(print-sequencial (cdr 1st))

)

)
(printf "]~gm)

(printf "[")

(printf n"s5m")

; (print-sequencial (reverse processes_running))
(printf "]~%[")

(printf n"s5m)

; (print-sequencial (reverse process_launch))
(printf "]~gm)
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load.ss

(load "record-def.so")
(load "os.so")

(load "proc-run.so")
(load "core.so")

0sS.88
(define os-stack ' ())

(define os-makecall
(lambda (number-o-cycles)
(let
((bob (make-process 0 0 number-o-cycles -1 () ()
(lambda () ’100) global-time)))
(set-process-engine! bob (process->engine bob))

(set! os-stack (append os-stack (list bob)))
)

proc-run.ss
(define global-time ’0) ; the "time’ it is to everyone

(define run-func
; This is the function that processes run to continue going. This is
; the function that checks on all of the 0S calls.
(lambda (numcycles lasttime retlst inprocess)
(if (eg? numcycles 0)
retlst
(if (< (random 100) (process-oscall inprocess))
(begin
(os-makecall (process-oscalllength inprocess))
(engine-block)
(run-func (- numcycles 1) lasttime retlst

)
(run-func (- numcycles 1) global-time
(if (eqg? lasttime global-time)
retlst
(cons (list global-time numcycles)

inprocess

)

inprocess)

retlst)

)

(define process->engine
; This takes in a process record and then creates it’s engine to be
; run by the simulation
(lambda (proc)
(make-engine
(lambda ()
(run- func
(process-cycles proc)
r-1
()
proc

)
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(define cycles->enginetime

; Because run-fun isn’t just one cycle this is the conversion factor
that are used by scheme.

; from "logical’
(lambda

units
(cyc)

(* cyc 28)

)

record-def.ss
(define-record process

)

oscall ; the
oscalllength
cycles ; the
id ; this is
output ; the
engine ;

memcall ;

starttime ;

)

(define make-data-set
(lambda (

(* run-length (/ (-

mem-usage

start_time
start_id
proc-num
proc-space
run-length
mem-usage ;
os-call
os-call-1 ;
)
(letrec
((helpe

(* mem-usage

to

(

"engine units’

percent of time the function makes os calls

; the number of cycles for the average os call
number of cycles the process will use

an inique id number
return of the whole thing

this is what is run
a function to return...

the time the proc starts

12
’
I

r

I
again

2

r (lambda

(/

The time that they start generating from

The first id number to use
number of procs to generate

the spacing between them

(random 20)

(,

10%

(if

average running time +-

+- 10%
again +-
length of said os calls

(helper
(+ curtime proc-space)

10)

(random 20)

(- proc-num 1)
(+ cur-id 1)
(cons

100)))))

10)

(let

((runt

10%

(curtime proc-num cur-id retlst)

(eq? 0 proc-num) (reverse retlst)

(+ run-length

(make-process

100))))

)

retlst)

os-call
os-call-1
runt

cur -id

‘null

‘null

(lambda () (+

curtime
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)
))
(helper start_time proc-num start_id ’ ())

)

run.ss

(load "load.so")

(load "/tmp/ted.variables.ss")
(load scheduler)

(load dataset)

(simulate dataset * () 7 ())
(load "display.so")

(exit)

schedule_one.ss

; need defined ahead of time:
proccess
context-switch-time
global-time

proc-os

P T T

; This implements shifting in the processes.

(define schedule
; uses os-stack
(lambda (os_proc prossessor_proc)

(let*
((myos (append os_proc prossessor_proc))
)
; (printf "schedule: "a ~a ~a~%" (length os_proc) (length
prossessor_proc) (length os-stack))
(if (null? os-stack)
(begin

(if (null? os_proc) ’ () (set! global-time (+
global-time context-switch-time)))
(if (null? myos)
(Iist () = ())
(list (cdr myos) (list (car myos)))
)
)
(let
((temp (car os-stack)))
(set! os-stack (cdr os-stack))
(set! global-time (+ global-time
context-switch-time))
(list myos (list temp))
)

)

; This leaves the lists as they are. Normally it could stop for 0S
; calls or other things, but it isn’t.
(define schedule-realtime
(lambda (proc-1list)
(cdr proc-list)
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schedule_shift.ss
; This scheduling program goes through and shifts in the processes as
; they become available

(define shift-last -10)

(define schedule
(lambda (os_proc processor_proc)
(if (and (null? os_proc) (null? processor_ proc))
(List 7 () 7 ())
(let
((proclst (append processor_proc os_proc))
(origid (sort < (map process-id processor_proc)))
)
(let
((proclst
(if (eqg? (process-id (car proclst))
shift-last)
(append os-stack (cdr proclst) (list
(car proclst)))
(append os-stack proclst)
)

(set! shift-last (process-id (car proclst)))
; (set! proclst (append os-stack proclst))
(set! os-stack ' ())
(letrec
((helper
(lambda (proclst retlst number)
(if (null? proclst)
(list " () (reverse retlst))
(if (eqg? number 0)
(list proclst (reverse
retlst))
(helper (cdr proclst) (cons
(car proclst) retlst) (- number 1))

)

))

(letrec
((retlst (helper proclst () 4))
(countdiff

(lambda (number lsta lstb)
(if (or (null? lsta) (null?
lstb)) number
(if (eqg? (car lsta) (car
1stb))
(countdiff (- number
1) (cdr 1lsta) (cdr 1lstb))
(if (< (car lsta) (car
1stb))
(countdiff number
(cdr 1lsta) 1stb)
(countdiff number
lsta (cdr 1stb))
)
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)
(set! global-time (+ global-time (*

context-switch-time (countdiff 4 origid (sort < (map process-id (cadr

retlst)))))))
retlst

)

)

(define schedule-realtime
(lambda (proc-list)
(cdr proc-list)
)

schedule_shift_persist.ss
This scheduling program goes through and shifts in the processes as

they become available

I

(define shift-last -10)

(define removenegones
(lambda (lst)
(letrec
((helper
(lambda (lst retlst)
(1f (null? 1lst) (reverse retlst)
(if (eg? -1 (car 1st))
(helper (cdr 1lst) retlst)
(helper (cdr 1lst) (cons (car 1lst)
retlst))
)

)
))
(helper 1lst ’())
)

)

(define schedule
(lambda (os_proc processor_proc)
(if (and (null? os_proc) (null? processor_ proc))

(List 7 () " ()

(let
((proclst (append processor_ proc os_pIroc))
(origid (sort < (map process-id processor_proc)))
)
(let

((proclst
(if (eqg? (process-id (car proclst))

shift-last)
(append os-stack (cdr proclst) (list

(car proclst)))
(append os-stack proclst)

)



59
))

(set! shift-last (process-id (car proclst)))
; (set! proclst (append os-stack proclst))
(set! os-stack 7 ())
(letrec
((helperx
(lambda (proclst retlst number)
(if (null? proclst)
(list " () (reverse retlst))
(if (eqg? number 0)
(list proclst (reverse
retlst))
(helper (cdr proclst) (cons
(car proclst) retlst) (- number 1))

)

))

(letrec
((retlst (helper proclst () 3))
(countdiff
(lambda (number lsta lstb)
(1f (or (null? 1lsta) (null?

lstb)) number
(if (eq? (car lsta) (car
lstb))
(countdiff (- number
1) (cdr lsta) (cdr lstb))
(if (< (car lsta) (car
lsthb))
(countdiff number
(cdr lsta) 1lstb)
(countdiff number
lsta (cdr 1stb))
)

)

(set! global-time (+ global-time (*
context-switch-time (countdiff 4 origid (sort < (map process-id (cadr
retlst)))))))

retlst

)

(define schedule-realtime
(lambda (proc-list)
(if (null? os-stack)
(cdr proc-1list)
(let
((ret (append os-stack proc-list)))
(set! os-stack 7 ())
ret

)
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schedule_top.ss
; This is a scheduling algorithim that always puts the top four
; processes in the os que in to the processor.

(define schedule
(lambda (os_proc processor_proc)
(letrec
((myos (append os-stack (append os_proc processor_proc)))
(origid (sort < (map process-id processor_proc)))
(helper
(lambda (proclst retlst number)
(if (null? proclst)
(list " () (reverse retlst))
(if (eg? number 0)
(list proclst (reverse retlst))
(helper (cdr proclst) (cons (car

)

proclst) retlst) (- number 1))

)
))
; (printf ".m)
(set! os-stack 7 ())
(letrec
((retlst (helper myos ' () 4))
(countdiff
(lambda (number lsta lstb)
(1f (or (null? lsta) (null? lstb)) number
(if (eqg? (car lsta) (car lstb))
(countdiff (- number 1) (cdr
lsta) (cdr lstb))
(if (< (car lsta) (car 1lstb))
(countdiff number (cdr
lsta) 1lstb)
(countdiff number lsta (cdr
lstb))
)

)

(set! global-time (+ global-time (*
context-switch-time (countdiff 4 origid (sort < (map process-id (cadr
retlst)))))))

retlst

)

)

(define schedule-realtime
(lambda (proc-list)
(cdr proc-1list)
)

schedule_top_persist.ss
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; This is a scheduling algorithim that always puts the top four
; processes in the os que in to the processor.

(define removenegones
(lambda (1lst)
(letrec
((helper
(lambda (lst retlst)
(if (null? 1st) (reverse retlst)
(if (eg? -1 (car 1lst))
(helper (cdr 1lst) retlst)
(helper (cdr 1lst) (cons (car 1lst)
retlst))
)

)
))
(helper 1lst ' ())
)

)

(define schedule
(lambda (os_proc processor_proc)
(letrec
((myos (append os-stack (append os_proc processor_proc)))
(origid (sort < (map process-id processor_proc)))
(helper
(lambda (proclst retlst number)
(if (null? proclst)
(list " () (reverse retlst))
(if (eqg? number 0)
(list proclst (reverse retlst))
(helper (cdr proclst) (cons (car
proclst) retlst) (- number 1))
)

)
))
; (printf ".m)
(set! os-stack ’ ())
(letrec
((retlst (helper myos ' () 3))
(countdiff
(lambda (number lsta lstb)
(if (or (null? lsta) (null? lstb)) number
(if (eg? (car lsta) (car lstb))
(countdiff (- number 1) (cdr
lsta) (cdr lstb))
(if (< (car lsta) (car lstb))
(countdiff number (cdr
lsta) lstb)
(countdiff number lsta (cdr
lstb))
)

)

(set! global-time (+ global-time (*
context-switch-time (countdiff 4 (removenegones origid) (removenegones
(sort < (map process-id (cadr retlst))))))))



(define

retlst

schedule-realtime

(lambda (proc-list)

(if (null? os-stack)
(cdr proc-list)

(let
((ret (append os-stack proc-list)))
(set! os-stack 7 ())
ret

)

variables.ss

(define
(define

(define
(define
(define

(define
(define

frame-size 1000)
context-switch-time 10)

memory-calls 100)
os-calls 1.000000e-02)
os-length 200)

scheduler "schedule top.so")
dataset "dataset_ simultaneous.so")
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Appendix B: Matlab Source Code

Description of Code
The Matlab source code is all based around makegraph. This is the function
that most users of this code will call to get the data that they need. The makegraph

function coordinates the data creation process and cycles through the different

scheduling algorithms. The getdataset and getscheduler function take in an

integer and return the textual representation of the data set or scheduler respectively.

In the getgraph function takes a set of parameters, and then builds the
variablegs. gs file for the simulation being run (a sample is in Appendix A). It the
runs the getdata .m script which pulls the data out of the Scheme code into Matlab.
The data are returned to makegraph, which creates a graph with labels and a title

for the user.

getdata.m

[s, r] = unix(’scheme run.ss |
/afs/rose-hulman.edu/users/class00/gouldtj/bin/tail -3 >
/tmp/ted.tempfile.matlab’) ;

[s, r] = unix(’/afs/rose-hulman.edu/users/class00/gouldtj/bin/head -1
/tmp/ted.tempfile.matlab’) ;

stats = eval (r);

[s, r] = unix(’/afs/rose-hulman.edu/users/class00/gouldtj/bin/tail -2

/tmp/ted. tempfile.matlab |
/afs/rose-hulman.edu/users/class00/gouldtj/bin/head -1');

run = eval (1) ;

[s, r] = unix(’/afs/rose-hulman.edu/users/class00/gouldtj/bin/tail -1
/tmp/ted.tempfile.matlab’) ;

launch = eval (1) ;

getdataset.m

function name = getdataset (number)

switch number

case 1,

name = ’‘dataset longl.so’;
case 2,

name = ’‘dataset long2.so’;



case 4,

name = ‘dataset long4d.so’;
case 8,

name = ‘dataset_long8.so’;
case 16,

name = ’‘dataset longlé.so’;
case 6,

name = ‘dataset_simultaneous.so’;
case 7,

name = ‘dataset_solid.so’;
case b5,

name = ’‘dataset spiked.so’;
end

getgraph.m

function graphdata
context switchs,

P 00 O o O A° O O° P O° o

getgraph (dataset,
frame sizes, schedulers, datatype)

function getgraph

memory calls, os _calls,

This function graphs scheduling data for the Ted Gould

SMT scheduler.

The six parameters (yes six)
except for the first and last which are these values:

dataset: 1 - dataset_longl.ss
2 - dataset_long2.ss
scheduler: 1 - schedule one.ss
2 - schedule shift.ss
numberofentries = length (dataset)

length (os_calls)

length (schedulers) ;

graphdata

X =

for
for
for
for
for
for

end
end
end
end
end

1;

ds
mc
oc
cs
fs
sc

var fp
fprintf (varfp,
fprintf (varfp,
fprintf (varfp,
fprintf (varfp,
fprintf (varfp,
fprintf (varfp,
fprintf (varfp,

= zeros (1,

dataset

memory_calls

os_calls

* length (context switchs)

numberofentries) ;

context switchs

frame sizes
schedulers

= fopen(’/tmp/ted.variables.ss’, 'w’);

fclose (varfp) ;

getdata;

graphdata (x) = stats(datatype);
x + 1;

X =

o° o o° 0P o°

sc
fs
cs
oc
mc

are mostly values

* length (memory calls) *
* length (frame sizes) *

" (define frame-size %d)\n’, fs);
" (define context-switch-time
' (define memory-calls %d)\n’,
' (define os-calls %d)\n’, oc);
' (define os-length %d)\n\n’,
' (define scheduler \"%s\")\n-’
' (define dataset \"%s\")\n’,

gd)\n\n’, cs);

mc) ;

200) ;

, getscheduler (sc)) ;
getdataset (ds)) ;
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end % ds

bob

5;

getscheduler.m
function name = getscheduler (number)

switch number

case 1,

name = ’'schedule one.so’;
case 2,

name = ‘schedule shift.so’;
case 3,

name = ‘schedule_top.so’;
case 4,

name = ‘schedule_shift persist.so’;
case b5,

name = ‘schedule top persist.so’;
end

makegraph.m
function bob = getgraph(dataset, memory calls, os calls,
context_switchs, frame_sizes, datatype)

if (length(dataset) > 1)

varied dataset;
xlab = "Number of Processes’;
end

if (length(memory calls) > 1)
varied = memory calls;
xlab = "Memory Call Percentage’;
end

if (length(os_calls) > 1)
varied = os_calls;
xlab = "0S Call Percentage’;
end

if (length(context switchs) > 1)

varied context switchs;
xlab = "Context Switch Time’;
end

if (length(frame sizes) > 1)

varied frame sizes;
xlab = 'Frame Size’;
end
datafile = zeros (5, length(varied));

for i = 1:5

datafile(i, :) = getgraph(dataset, memory calls, os_calls,
context_switchs, frame sizes, i, datatype);

end
figure;
;plot (varied, datafile(1, :), varied, datafile(2, :), wvaried,
datafile (3, :), varied, datafile(4, :), varied, datafile(5, :));
;legend (' Traditional’, ’Shift In’, 'Top’, ’'Shift In Persistent’, ’'Top
Persistant’, 0);
plot (varied, datafile(2, :)./datafile(l,:), ’'-', varied, datafile(3,
1) ./datafile(1,:), ':’, varied, datafile(4, :)./datafile(1,:), '-.",

varied, datafile(5, :)./datafile(1,:), "--');
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legend (*Shift In’, ’"Top’, 'Shift In Persistant’, ’'Top Persistant’, 0);
xlabel (x1lab) ;

switch datatype

case 1,

vlabel (' CPU Usage’) ;
case 2,

ylabel (Min Turnarround Time’) ;
case 3,

vlabel (' Average Turnarround Time’) ;
case 4,

ylabel (Max Turnarround Time’) ;
case 5,

ylabel ('Min Responce Time’) ;
case 6,

vlabel (' Average Responce Time') ;
case 7,

ylabel ('Max Responce Time’) ;
case 8,

ylabel ('Min Wait Time’);
case 9,

vlabel (' Average Wait Time’) ;
case 10,

ylabel ('Max Wait Time’);
case 11,

vlabel (' Throughput’) ;
case 12,

ylabel (' Number of 0S Calls’);
end

bob = datafile;



